Biotechnology uses living organisms and biological systems to create new products. Over the last 50 years, this field has developed rapidly because of advances in genetic engineering that allow scientists to make changes to organisms’ DNA. New methods of genetic modification have led to rapid advances in gene editing and testing and have also become much more targeted, quicker, and cheaper. According to the US National Intelligence Council, “biotechnologies are at an inflection point […] turning science fiction into reality.”.[1]
Within the broad category of biotechnology, there are many emerging developments that are mentioned below (and many, many more that we do not have space to cover). Although it lies at the crossroads between the categories of science and technology, biotechnology is included in the ‘Science’ category here because its foundations are in scientific research and experimentation – and it overlaps with many other scientific fields such as molecular biology, biochemistry, and genomics. Nevertheless, a lot of the developments mentioned here have strong links to other trends in the technology category (e.g. ‘Artificial intelligence’).
While international standardization is no stranger to the field of biotechnology (ISO/TC 276, Biotechnology, was created back in 2013), the pace of development in this field and the breadth of its applications means that this is an area to watch for emerging-market needs.
Science trends
Advances in gene editing could potentially lead to enormous breakthroughs in human health, agricultural and industrial productivity, and sustainability. Technologies such as clustered regularly interspaced short palindromic repeats (CRISPR) have transformed this field, by enabling extensive genome editing and allowing scientists to precisely edit DNA using a bacterial enzyme.[2]
Gene editing could lead to significant improvements in human health and medicine by eliminating hereditary diseases (by modifying or replacing illness-causing genes), providing more effective and targeted treatments for diseases such as cancer, and eliminating causes of disease (e.g. malarial carrying mosquitoes).[3,4] As gene editing technologies become faster and cheaper, they will foster the shift towards personalized medicine.[1] They could even allow the transplant of animal organs into humans – in October 2021, a significant step was made towards animal-to-human transplants as surgeons in the US tested the transplant of a genetically modified pig kidney on a deceased recipient.[5,6]
Applying biotechnology such as gene editing to food production has the potential to significantly increase the sustainability of food production by boosting agricultural yields while reducing land and water use, increasing the nutritional content of food, and increasing crop resilience (resistance to pests and severe weather). Even meat-eating could become sustainable if the use of CRISPR technology can make the process of growing meat in the lab much cheaper and more efficient.[7] All these factors will be increasingly important to guarantee food security for populations dealing with the effects of climate change.[1]
Broader sustainability impacts could result from the application of gene editing technologies to create microbes that can produce biofuels, new construction materials, biodegradable plastics and more.[8] For example, cities of the future could potentially be lit up (at no cost and with no emissions) by bioluminescent algae, or plants that have been engineered to glow through the addition of genes for fluorescent proteins from these algae or jellyfish.
Nevertheless, there are moral and ethical questions that will arise as gene editing technologies become more advanced and where it may be difficult to find international consensus.[4] Human augmentation (enhancing human physical or cognitive abilities), the safety of genetically modified food or animals, the large-scale collection and storage of genetic data, and the possibility that gene editing technologies could be used to create targeted biological weapons – these are all issues likely to raise divisive political debates.
News stories
- Biotechnologie — Édition génomiquePartie 1: Vocabulaire
- Biotechnologie — Modèles informatiques prédictifs dans la recherche sur la médecine personnaliséePartie 1: Construction, vérification et validation des modèles
- ISO/CD TS 9491-2.2 [Actuellement en cours d'élaboration]Biotechnologie — Modèles informatiques prédictifs dans la recherche sur la médecine personnaliséePartie 2: Lignes directrices relatives à la mise en oeuvre de modèles informatiques dans les systèmes intégrés d'aide à la décision clinique
- Biotechnologie — Biobanque — Exigences relatives aux cellules souches neuronales humaines dérivées de cellules souches pluripotentes
- Biotechnology — Biobanking of parasitesPart 1: Helminths
- ISO/DIS 20012 [Actuellement en cours d'élaboration]Biotechnology — Biobanking — Requirements for human natural killer cells derived from pluripotent stem cells
- ISO/DIS 20070 [Actuellement en cours d'élaboration]Biotechnology — Biobanking — Requirements for sample containers for storing biological materials in biobanks
- ISO/DIS 20309 [Actuellement en cours d'élaboration]Biotechnology — Biobanking — Requirements for deep-sea biological materials
- ISO/CD 20387 [Actuellement en cours d'élaboration]Biotechnology — Biobanking — General requirements for biobanks
- ISO/DIS 20397-3 [Actuellement en cours d'élaboration]Biotechnology — Massively parallel sequencingPart 3: General requirements and guidance for metagenomics
- Biotechnologie — Biobanking — Guide de mise en oeuvre de l'ISO 20387
- Biotechnologie — Banques biologiques — Exigences relatives aux cellules stromales mésenchymateuses humaines issues des tissus du cordon ombilical
- Biotechnologie — Biobanque des microorganismesPartie 1: Bactéries et archées
- Biotechnologie — Séquençage d'ADN massivement parallèle — Exigences générales pour le traitement des données des séquences métagénomiques "Shotgun"
- Biotechnologie — Biobanking — Exigences relatives aux cellules souches pluripotentes humaines et murines
- Biotechnologie — Biobanking — Exigences relatives aux cellules stromales mésenchymateuses dérivées de la moelle osseuse
- ISO 16677-1 [Actuellement en cours d'élaboration]Biobanques — GermoplasmePartie 1: Espèces animales agricoles
- Microbiologie de la chaîne alimentaire — Séquençage de génome entier pour le typage et la caractérisation génomique des bactéries — Exigences générales et recommandations
- Criblage pour la détection des organismes génétiquement modifiés (OGM) dans le coton et les textiles
- Informatique génomique — Éléments de données et leurs métadonnées pour décrire les informations relatives à la charge tumorale mutationnelle (TMB) du séquençage massif parallèle d'ADN
- Informatique génomique — Éléments de données et leurs métadonnées pour décrire les informations relatives à l'instabilité des microsatellites (MSI) du séquençage massif parallèle d'ADN
- Genomics informatics — Phenopackets: A format for phenotypic data exchange
- Genomics informatics — Requirements for interoperable systems for genomic surveillance
- Informatique génomique — Règles de description des données génomiques pour les produits et services de détection génétique
- Informatique génomique — Éléments de données et leurs métadonnées pour décrire les informations structurées de la séquence génomique clinique dans les dossiers de santé électroniques
- ISO/CD TR 21394.2 [Actuellement en cours d'élaboration]Genomics informatics — Whole Genomics Sequence Markup Language (WGML)
- Informatique génomique — Rapport de fusion de gènes clinique structuré pour les dossiers de santé électroniques
- Informatique génomique — Spécification du partage des données de génomique clinique pour le séquençage de nouvelle génération
Synthetic biology refers to the use of certain tools and approaches within biotechnology to create new biological parts or systems, for a specific purpose. These tools may include gene editing and there is certainly overlap and blurred lines between these two trends. However, the scale of DNA changes introduced in synthetic biology is generally larger, and synthetic biology also incorporates the fields of engineering, design, and computer science. A consensus definition drafted by a group of European experts defined synthetic biology as follows: Synthetic biology is the engineering of biology: the synthesis of complex, biologically based (or inspired) systems, which display functions that do not exist in nature. This engineering perspective may be applied at all levels of the hierarchy of biological structures – from individual molecules to whole cells, tissues, and organisms. In essence, synthetic biology will enable the design of biological systems in a rational and systematic way.[9]
The emerging global market for synthetic biology was estimated to be worth USD 11 billion in 2018 and to grow by 24% by 2025.[10] Several notable trends in synthetic biology include[2]:
- mRNA vaccines: Instead of using bits of a live or dead virus, these vaccines introduce mRNA molecules that cause the body’s own cells to produce a protein, which then elicits an immune response. The mRNA vaccines for COVID-19 approved in December 2020 (Pfizer and Moderna) were the first ever mRNA vaccines to be marketed. In addition this type of vaccine has huge promise because it is quicker to design and test and can be made synthetically, without cultured cell-lines.
- Organoids and organs-on-chips: Organoids are tiny in vitro organs grown from human stem-cells. These allow scientists to study how human tissue responds to drugs, viruses, and other stimuli in vitro. Organs-on-chips (or micro-physiological systems) are used for the same purpose but are engineered systems where cells from organs are grown on a chip (instead of in culture), which allows for a much more precise control of the cells and their micro-environment. This can lead to the development of much more advanced in vitro models of human systems.
- DNA memory: In 2018, scientists discovered how to create random access memory (RAM) on DNA at scale. In 2020, Chinese scientists at Tianjin University stored 445 kB of data in a cell on the E. coli bacterium. Current magnetic or optical data-storage systems require huge amounts of space and energy. Using DNA as a medium for storing data could potentially solve future data-storage problems, as DNA data storage is durable and hundreds of terabytes of capacity could be stored in a pill-sized container.
- Biotechnologie — Matériaux auxiliaires présents lors de la production de produits thérapeutiques cellulaires et de produits de thérapie génique
- Biotechnologie — Bioprocédés — Exigences générales pour la conception d'emballages destinés à contenir des cellules à usage thérapeutique
- Biotechnologie – Synthèse des acides nucléiquesPartie 1: Exigences relatives à la production et au contrôle qualité des oligonucléotides synthétisés
- Biotechnology — Nucleic acid synthesisPart 2: Requirements for the production and quality control of synthesized gene fragments, genes, and genomes
- ISO/CD TS 20853 [Actuellement en cours d'élaboration]Biotechnology — Bioprocessing — General requirements for the bacteriophage preparation for therapeutic use
- Biotechnologie — Exigences et considérations générales relatives à l'authentification de la lignée cellulaire
- Biotechnologie — Bioprocédés — Exigences et considérations générales pour les systèmes d'équipement utilisés dans la fabrication de cellules à usage thérapeutique
- Biotechnologie — Méthodes d'analyse — Approche basée sur les risques pour la sélection et la validation de méthodes pour la détection microbienne rapide dans les bioprocédés
References
- Global trends. Paradox of progress (US National Intelligence Council, 2017)
- 2021 Tech trends report. Strategic trends that will influence business, government, education, media and society in the coming year (Future Today Institute, 2021)
- 20 new technology trends we will see in the 2020s (BBC Science Focus Magazine, 2020)
- Global strategic trends. The future starts today (UK Ministry of Defence, 2018)
- Global trends 2020. Understanding complexity (Ipsos, 2020)
- Surgeons successfully test pig kidney transplant in human patient (Guardian, 2021)
- Memphis meats uses crispr to create real meat from animal cells (Trendhunter, 2019)
- Future technology for prosperity. Horizon scanning by Europe's technology leaders (European Commission, 2019)
- Synthetic biology. Applying engineering to biology: Report of a NEST high-level expert group (European Commission, 2005)
- Future possibilities report 2020 (UAE Government, 2020)